ROSTA Oscillating Mountings

Elastic Suspensions for Screens and Shaker Conveyors
High dampening - long lifetime - overload proof

ROSTA

elastic suspensions for all types of screening

Spring accumulators for natural frequency shakers

- for the powerful, harmonic actuation of feeders
- energy-saving and silent power packs

Double rocker arms for high speed shaker conveyors

- 1 : 1 mass balancing, reaction neutral suspensions
- high dynamic spring rates for natural frequency systems

Mountings

 machines and shaker conveyors

Selection table for free oscillating systems (with unbalanced excitation)

				$\begin{aligned} & 65 \\ & 5+5-5-5 \\ & 58 \end{aligned}$	
		One mass system circular motion screen	One mass system linear motion screen	Two mass system with counterframe	One mass system linear motion screen hanging
	AB ABI Page 2.10	Oscillating Mounting - universal mounting. High vibration isolation and low residual force transmission. Natural frequencies approx. $2-3 \mathrm{~Hz}$. 9 sizes from 50 N to $20^{\prime} 000 \mathrm{~N}$ per element.			
	AB-HD ABI-HD Page 2.12	Oscillating Mounting for impact loading and high production peaks. (Heavy Duty) Natural frequencies approx. $2.5-4 \mathrm{~Hz}$. 8 sizes from 150 N to $14^{\prime} 000 \mathrm{~N}$ per element.			
	$\begin{gathered} \text { AB-D } \\ \text { Page } \\ 2.14 \end{gathered}$		Oscillating Mounting in compact design. Optimal in two mass systems as counterframe mounting. Natural frequencies approx. $3-4.5 \mathrm{~Hz}$. 7 sizes from 500 N to $16^{\prime} 000 \mathrm{~N}$ per AB-D.		
	$\begin{aligned} & \text { HS } \\ & \text { Page } \end{aligned}$ 2.15				Oscillating Mounting for hanging systems. Natural frequencies approx. $3-4 \mathrm{~Hz}$. 5 sizes from 500 N to $14^{\prime} 000 \mathrm{~N}$ per HS .

Selection table for gyratory sifters

AK	Universal Joint for the support or suspension of positive drive or freely oscillating gyratory sifting machines. 10 sizes up to $40^{\prime} 000 \mathrm{~N}$ per AK.	Gyratory sifter upright staying 2.36	Single Joint specially designed with large sifter habber volume for the suspension of gyratory sifting machines. Models with right-hand and left-hand threads. 5 sizes up to $16^{\prime} 000 \mathrm{~N}$ per AV .

ROSTA

Selection table for guided systems (crank driven)

		One mass shaker "brute-force" system	One mass shaker "natural frequency" system	Two mass shaker "fast-runner" system with reaction force-compensation
	AU Page 2.25	Single Rocker with adjustable length. Models with right-hand and left-hand threads. 7 sizes up to $5^{\prime} 000 \mathrm{~N}$ per rocker suspension.		
	AS-P AS-C Page 2.26	Single Rocker with decided center distance. 6 sizes up to $2^{\prime} 500 \mathrm{~N}$ for flange fixation. 6 sizes up to $2^{\prime} 500 \mathrm{~N}$ for central fixation.		
	$\begin{aligned} & \text { AD-P } \\ & \text { AD-C } \\ & \text { Page } \\ & 2.27 \end{aligned}$			Double Rocker with decided center distance. 5 sizes up to $2^{\prime} 500 \mathrm{~N}$ for flange fixation. 4 sizes up to $1^{\prime} 600 \mathrm{~N}$ for central fixation.
	AR Page 2.28	Single rocker and double rocker with adjustable length, connection of the AR elements using round pipe. Two mass shakers with design feasibility of two-directional conveying. 2 sizes up to 800 N per rocker suspension.		

ST
Page
2.29

Drive Head for crank drive transmission in shaker conveyors.
Models with right-hand and left-hand threads.
9 sizes up to $27^{\prime} 000 \mathrm{~N}$ per drive head.

Spring Accumulator with high dynamic spring value for feeder systems running close to resonance frequency.
A spring accumulator consists of 2 DO-A elements.
5 sizes up to dynamic spring value of $320 \mathrm{~N} / \mathrm{mm}$.

Notes regarding some special shaker systems:

- For free oscillating systems on pages 2.16-2.19
- For guided systems on pages 2.31-2.33
- For gyratory sifters on page 2.34

Technology of free oscillating systems with unbalanced excitation

Introduction

Free oscillating systems are either activated in using exciters, unbalanced motors or unbalanced shafts.
The oscillation amplitude, type of vibration and the direction of vibration of the screen are determined by the dimensioning and arrangement of these actuators. The excitation force, the angle of inclination of the excitation, the inclination of the screen-box and the position of the center of gravity determine the resulting oscillation amplitude of the device. The oscillation amplitude, and thereby the conveying speed of the machine, can be optimized by augmenting these.

ROSTA spring suspensions support the desired oscillation movement of the screen machine. Through their shape and function, they help to achieve a purely linear conveyor motion without unwanted lateral tumbling.

These ideal spring suspensions harmonically support the running of the vibrating screen. Because of their high spring deflection capacity, they offer a good detuning of the excitation frequency with a very low natural frequency, which guarantees a high isolation effect with regard to the machine substructure. The ROSTA mounts effectively dissipate the large residual force peaks at start-up and shut-down, when passing through the natural frequency of the suspension.

Circular motion screens

Circular motion screens or circular vibrators are normally excited by unbalanced weights that create a circular rotating oscillation of the screening frame. Relatively low accelerations of the screened material are achieved with this form of excitement. Circular vibrators thereby normally work with a screening frame inclination of 15° to 30°, so that an adequate material throughput is ensured.

It is recommended to mount circular vibratory screens of this kind on ROSTA type $A B$ or $A B-H D$ oscillating mountings. Experience has shown that the positioning of the $A B$ suspensions under circular vibrators should be a mirror-inverted of each other, which, with the above-mentioned frame inclination, will counteract the tendency of the shifting of the center of gravity. If the suspension of the screening frame requires two supporting suspensions per brace support for reasons of capacity, these should also be preferably arranged in mirror-inverted manner for the above-mentioned reason.

ROSTA

Linear motion screens or linear vibrators are normally excited by two unbalanced motors or by means of linear exciters, as well as through double unbalanced shafts (Eliptex), which generate a linear or slightly elliptical oscillation of the screening frame. Depending on the inclination positioning of the exciter, the angle of throw of the screened product can be adapted to the desired form of processing. A very high acceleration of the screened product, i.e. a higher material throughput, is achieved with linear vibrating screens. The screening frame of the linear vibrator is normally in the horizontal position.

Linear vibrating screens are preferably mounted on ROSTA oscillating mountings type $A B$ or $A B-H D$. Depending on the positioning of the exciter on the screening frame, the feed-end: discharge-end load distribution can be different. The feed-end side is normally lighter, as the exciters are positioned close to the discharge-end and thereby pull the material through the screening frame; in many cases, the feed-end: discharge-end distribution is thereby 40% to 60%. In the interest of an even suspension, it is thereby recommended to mount the screening frame on six or more ROSTA oscillating mountings. All oscillating mountings should stand in the same direction, with the "knee" pointing in the discharge-end direction.

Linear motion screens with counterframe

If, due to the demands of the process, large screens are mounted at a very high position in a building or in a purely steel construction, the transmission of the residual forces of a singlemass machine can set the entire structure into unwanted vibrations. Or if a new and more powerful machine is mounted in an existing building, the residual force transmission could be too high for the older building. The residual force transmission is drastically reduced through the mounting of a counterframe under the screen, with only a negligible loss of oscillation amplitude (compensation movement of the counterframe reduces the oscillation amplitude).
ROSTA also has the ideal supports for the suspension of counterframes, the very compact mountings type AB-D.

Discharge chutes hanging under silos and bunkers

Discharge chutes under silos are normally supported by means of complicated yoke constructions and are suspended on pressure springs. With its HS suspensions (HS = hanging screen), ROSTA offers the possibility of the direct, costeffective suspension of the discharge unit on silos and bunkers. The geometry of the HS suspensions has been designed to accommodate tensile loads.

Technology

Design layout and evaluation

Subject	Symbol	- Example	Unit
Mass of the empty channel and drive	m_{0}	680	kg
Products on the channel		200	kg
of which approx. 50\% coupling*		100	kg
Total vibrating mass*	m	780	kg
Mass distribution: feed end	\% feed end	33	\%
	\%discharge end	67	\%
Acceleration due to gravity	g	9.81	$\mathrm{m} / \mathrm{s}^{2}$
Load per corner feed end	Ffeed end	1263	N
Load per corner discharge end	Fdischarge end	2563	N
- Element choice in example		6x AB 38	
Working torque of both drives	AM	600	kgcm
Oscillating stroke empty channel	swo	8.8	mm
Oscillating stroke in operation	sw	7.7	mm
Motor revolutions	$\mathrm{n}_{\text {s }}$	960	rpm
Centrifugal force of both drives	Fz	30'319	N
Oscillating machine factor	K	4.0	
Machine acceleration	$a=K \cdot g$	4.0	9
- Natural frequency suspensions	fe	2.7	Hz
Degree of isolation	W	97	\%

Calculation formulas

Loading per corner

$$
F_{\text {feed-end }}=\frac{\mathrm{m} \cdot \mathrm{~g} \cdot \% \text { feed-end }}{2 \cdot 100} \quad F_{\text {discharge-end }}=\frac{\mathrm{m} \cdot \mathrm{~g} \cdot \% \text { discharge-end }}{2 \cdot 100}[\mathrm{~N}]
$$

Oscillating stroke (Amplitude peak to peak)

$$
\mathrm{sw} \mathrm{w}_{0}=\frac{\mathrm{AM}}{\mathrm{~m}_{0}} \cdot 10 \quad \mathrm{sw}=\frac{\mathrm{AM}}{\mathrm{~m}} \cdot 10[\mathrm{~mm}]
$$

Centrifugal force

$$
F_{z}=\frac{\left(\frac{2 \pi}{60} \cdot n_{s}\right)^{2} \cdot A M \cdot 10}{2 \cdot 1000}=\frac{n_{s}^{2} \cdot A M}{18^{\prime} 240}[\mathrm{~N}]
$$

Oscillating machine factor

$$
K=\frac{\left(\frac{2 \pi}{60} \cdot n_{s}\right)^{2} \cdot s w}{2 \cdot g \cdot 1000}=\frac{n_{s}^{2} \cdot s w}{1^{\prime} 789^{\prime} 000}[-]
$$

* The following has to be observed for the determination of the coupling effect and material flow:
- High coupling or sticking of humid bulk material
- Channel running full
- Fully stacked screen deck with humid material
- Weight distribution with and without conveyed material
- Centrifugal force does not run through the center of gravity (channel full or empty)
- Sudden impact loading occurs
- Subsequent additions to the screen structure (e.g. additional screening deck)

Vibration isolation
$W=100-\frac{100}{\left(\frac{n_{s}}{60 \cdot f e}\right)^{2}-1}[\%]$

- Example:

The proportion of the relationship between exciter frequency $16 \mathrm{~Hz}(960 \mathrm{rpm})$ and mount frequency 2.7 Hz is offering a degree of isolation of 97%.

Technology

Determination of the average material conveying speed vm

Main influencing factors:

- Conveying ability of the material
- Height of the bulk goods
- Screen box inclination
- Position of unbalanced motors
- Position of the center of gravity

The material speed on circular motion screens does vary, due to differing screen-box inclination angles

- Example:

The horizontal line out of the intercept point of stroke $(7.7 \mathrm{~mm}$) and motor revolutions (960 rpm) is indicating an average theoretical speed of $12.3 \mathrm{~m} / \mathrm{min}$ or $20.5 \mathrm{~cm} / \mathrm{sec}$.

Resonance amplification and continuous running

At the screen start-up and run-out the suspension elements are passing through the resonance frequency. By the resulting amplitude superelevation the four rubber suspensions in the $A B$ mountings do generate a high level of damping which is absorbing the remaining energy after only a few strokes. The screen box stops its motion within seconds.

Laboratory measurements of a typical development of the residual forces on a ROSTA screen suspension:

Alignment of the elements

If the suspensions for linear motion screens are arranged as shown on page 2.7, a harmonic, noiseless oscillation of the screen will result. The rocker arm fixed to the screen carries out the greater part of the oscillations. The rocker arm fixed to the substructure remains virtually stationary and ensures a low natural frequency, and thereby also a good vibration isolation. The mounting axis has to be arranged to be at right angles $\left(90^{\circ}\right)$ to the conveying axis, with maximum tolerance of $\pm 1^{\circ}$.

* compression load Gmax. and cold flow compensation (after approx. 1 year).

Element heights and cold flow behaviour AB and ABI

	Art. No.	Type	
	-07171 121	ABI-HD 15	
	07171128	ABI-HD 18	
	07051070	AB-HD 27	
	07171123	ABI-HD 27	
	07051071	AB-HD 38	
	07171124	ABI-HD 38	
	07051072	AB-HD 45	'
	$\bigcirc 07171125$	ABI-HD 45	2
	07051062	AB-HD 50	3'501
或的	07171126	ABI-HD 50	3
	07051063	AB-HD 50-1.6	4'80
	07051060	AB-HD 50-2	
	$\bigcirc 07171127$	ABI-HD 50-2	6000

Element heights and cold flow behaviour AB-HD and ABI-HD

Art. No.	Type	Load capacity Gmin. - Gmax. [N]		A^{*} max. load	B	C	D	E	F	H	1	J	K	L	M	Weight [kg]
07281000	AB-D 18	$500-1$ 1200	137	112	115	61	50	12.5	90	3	9	9	74	31	30	1.3
07281001	AB-D 27	1'000 - 2'500	184	148	150	93	80	15	120	4	9	11	116	44	50	2.9
07281002	AB-D 38	2'000 - 4'000	244	199	185	118	100	17.5	150	5	11	13.5	147	60	70	7.5
07281003	AB-D 45	3'000 - 6'000	298	240	220	132	110	25	170	6	13.5	18	168	73	80	11.5
07281004	AB-D 50	4'000 - 9'000	329	272	235	142	120	25	185	6	13.5	18	166	78	90	22.0
07281005	AB-D 50-1.6	6'000-12'000	329	272	235	186	160	25	185	8	13.5	18	214	78	90	25.5
07281006	AB-D 50-2	8'000-16'000	329	272	235	226	200	25	185	8	13.5	18	260	78	90	29.0

Element heights and cold flow behaviour AB-D

* compression load Gmax. and cold flow compensation (after approx. 1 year).

Oscillating Mountings

Type HS for hanging screens（standerd blue） Type HSI for hanging screens（stainless steel）

Art．No．	Type	Natural frequency Gmin．－Gmax． ［ Hz ］	Z	Dynamic spring value		Capacity limits by different rpm										
						$720 \mathrm{~min}^{-1}$		$960 \mathrm{~min}^{-1}$		$1440 \mathrm{~min}^{-1}$						
						$\begin{gathered} \mathrm{sw} \\ \max . \\ {[\mathrm{mm}]} \end{gathered}$	$\underset{\substack{\mathrm{Kax} \\[-]}}{\substack{\mathrm{K} \\ \hline}}$	$\begin{gathered} \text { sw } \\ \max _{[\mathrm{mm}} \end{gathered}$	$\underset{\substack{\mathrm{Kax} \\[-]}}{\substack{\mathrm{K} \\ \hline}}$	$\begin{gathered} \mathrm{sw} \\ \max _{[\mathrm{mm}} . \end{gathered}$	$\begin{gathered} \mathrm{K} \\ \max \\ {[-]} \end{gathered}$					
気第 07321101	HSI 15	5．2－4．7	35	17	10	8	2.3	7	3.6	5	5.8					x
$\stackrel{\text { nnew }}{\sim}$	HSI 18	4．5－4．0	50	30	19	10	2.9	9	4.6	7	8.1					x
07311001	HS 27	4．2－3．8	60		32							x	\times		\times	
	HSI 27	4．2－3．8	60	65	32	12	3.5	10	5.2	8	9.3					x
07311002	HS 38											x	\times		x	
$\stackrel{\text { 気 }}{\text { new }} 007321104$	HSI 38	3．6－3．3	90	95	46	15	4.3		6.7	8	9.3					x
07311003	HS 45	3－3．0	100	142	70	17	49			8	93	x	\times	\times	\times	
	HSI 45	3．3－3．0	100		70		4.9				9.3					x
07311004	HS 50	3．2－2．9	120	245	120	18	52	15	77	8	93			\times	\times	
気等 07321106	HSI 50	3．2－2．9	120		12		5.2				9.3					x
07311005	HS 50－2	3．2－29	120		200	18	52		77	8	93			x	\times	
$\stackrel{\text { nnew }}{\text { new }} 07321107$	HSI 50－2															x
				Values in range at 96 sw of	minal load min^{-1} and 8 mm	Acceleration＞ 9.3 g is not recommended							Material structure			

C
for HS 50 according 2006／42／EG（hanging load bearing capacities）

The HS Mountings shall be fastened with the foreseen amount of screws（existing fixation holes or slots）of quality 8.8 with consideration of the prescribed fastening torque．

Element heights and cold flow behaviour HS and HSI

ROSTA

Allocation table

Art. No. DK	Type	Centrifugal force max.	Number of brackets	Type	Art. No. BK
01071008	DK-A 27×60	$1^{\prime} 000 \mathrm{~N}$	1	BK 27	01520004
01071011	DK-A 38×80	$2^{\prime} 000 \mathrm{~N}$	2	BK 38	01520005
01071014	DK-A 45×100	$3^{\prime} 500 \mathrm{~N}$	2	BK 45	01520006
01071015	DK-A 45×150	$5^{\prime} 250 \mathrm{~N}$	3	BK 45	01520006
01071017	DK-A 50×200	$10^{\prime} 000 \mathrm{~N}$	3	BK 50	01520007
01071018	DK-A 50×300	$15^{\prime} 000 \mathrm{~N}$	4	BK 50	01520007

ROSTA Oscillating Mountings and Accessories for individual Customer Solutions

Pendulum joint, the cost-efficient drive solution with only one unbalanced motor

If a single vibration motor is built onto an elastic pendulum joint (e.g. a DK element), the device will carry out a slightly elliptical oscillation shape (linear movement). The final oscillation motion is dependent on the distance between pendulum axis and motor axis. The pendulum suspension has only been used on rather smaller feeding devices. The inclination angle of the motor configuration is approx. 45°.

ROSTA components for pendulum mounts are mentioned in the general catalogue "Rubber suspension units".

Suspensions of spiral or coil feeders

Spiral-shaped conveyors are used in processing systems where bulk goods should stay on the conveying trough in the smallest possible space for a long period in order to cool down or dry. Not infrequently, the resulting channel length can be 25-30 meters in a spiral tower that is only five meters high! With a spiral conveyor supported on ROSTA Oscillating Mountings Type AB-D, there is no need for additional fall-prevention devices such as cable bracings or securing pipes in the spiral, as is the case for helical spring supports. If a spring breaks here, the complete spiral tower tilts - unless it has been secured with cable bracings.
ROSTA AB-D suspensions offer a high isolation effect, clearly defined oscillations up to the topmost spiral and absolute stability for the spiral tower.

The AU-DO rocker suspensions have been mainly developed for the channel support in continuously loaded, base frame excited two-mass oscillation systems with unbalanced drive (energetic amplification). The base frame m_{1} is excited by means of unbalanced motors and the spring accumulators of the AU-DO rocker suspensions amplify the marginal frame oscillation amplitude into a considerable throw amplitude on the conveying channel m_{2}. The base frame is ideally supported on ROSTA Oscillating Mountings Type AB. These systems are characterised by low, hardly measurable residval force transmission into the substructure and are therefore suitable for installation on steel frameworks and intermediate floors in processing buildings. Additional customer benefits are the low-noise operation, the low involved motor power and the simple installation.

The AU-DO elements are available in 5 sizes.
We will be glad to calculate your specific system, please ask for our relevant questionnaire.

Customized Oscillating Mountings Type AB-HD with low natural frequency and high load capacity

Art.-No.	Type	Load capacity Gmin. - Gmax. [N]		A* max. load		B* max. load	C	\oplus D	E	F	H	L	M	N	Weight [kg]
07051076	AB-HD 70-3	9'000-20'000	592	494	160	215	180	22	200	260	9	300	380	200	82
07051080	AB-HD 100-2.5**	15'000-37'000	823	676	222	302	250	26	300	380	12	250	350	110	170
07051081	AB-HD 100-4**	$25^{\prime} 000-60^{\prime} 000$	823	676	222	302	250	26	300	380	12	400	500	260	230

These types can be combined with one another (identical heights and operation behaviour)

* compression load Gmax. and cold flow compensation (after approx. 1 year).
** We will be glad to calculate your specific system, please ask for our relevant questionnaire.

Washing- and dewatering-screen for vegetables on $A B$ Mounting

Selection-screen for potato chips on stainless steel $A B$ Mountings

Circular motion screen for minerals on $A B$ TWIN Mountings

Washing- and dewatering-screen for vegetables on $A B$ Mountings

Circular motion screen for gravel on $A B$ TWIN Mountings

ROSTA
www.rosta.com
2.18

www.rosta.com

Technology of crank shaft driven shaker conveyors

Introduction

Oscillating shaker conveyors with crank shaft drive are widely used for the transportation and selection of bulk material. A shaker conveyor consist of a heavy and (infinitely) stiff designed shaker and/or screening trough, which is supported by several pairs of guiding rocker arms. The rocker arms are also connected with the lower base frame which is anchored in the building foundation by means of tie bolts. The eccentric shaft transmitting the oscillations to the trough is always driven by elastic belt drive to compensate the hits by the dead centers of the crank shaft drive. A driving rod with an elastic drive head connects the crank drive with the base frame of the trough and transmits the required oscillations for the transport of the bulk material on the feeder. According to the length, stiffness and weight of the shaker trough several pairs of supporting and guiding rocker arms are required between base frame and conveyor.

Relatively slow acting oscillating conveyors are usually designed as positive movement systems ("brute-force" systems) transmitting the high reaction forces of the crank reverse motion into the building foundation. Faster running shaker conveyors with crank shaft drive are therefore usually designed as two mass systems with direct compensation of the reaction forces by the counter-mass hanging at the lower end of so said double rocker arms directly underneath the trough mass ("Fast-runner" systems).

To achieve a very "smooth" course of motions on fast acting shaker conveyors based on one or two masses the installation of additional spring accumulators offering an actuation of the shaker system close by the resonance frequency ("natural frequency" systems) is recommended. These pre-loaded spring accumulators compensate the hard hits of the crank shaft drive at the dead centers and are heavily supporting the eccentric trough motion with their high dynamic stiffness.

One mass shaker conveyor systems without spring accumulators

Design	Characteristics	ROSTA elements
	acceleration: 1.1 to 1.7 g -forces	oscillating mountings: AU, AS-P, AS-C, AR
"brute-force" system as basic version		

The "brute-force" shaker conveyor system is widely used in the processing industries due to its constructive simplicity and cost efficient design method. It characterizes by a massive feeding trough mounted on several pairs of guiding rocker arms connected with a ground frame and driven by a crank shaft system. The relatively low costs for the design and construction of this feeding system are favouring this standard shaker for the use in many processing operations where rather low material speeds are fully adequate. Too high speeds and too long strokes would generate in this one mass system too high shocks by the change in direction of the crank shaft drive. Therefore, accelerations of $>1,7 \mathrm{~g}$-forces are not applicable with this "brute-force" shaker.
www.rosta.com

To avoid high material fatigue stress on the trough structure, the relevant design should feature heavy stiffening rips and border strips to make the feeding channel more or less "infinitely" stiff. One mass shaker conveyors have to be bolted down on the foundations by means of tie anchors.

One mass shaker conveyor systems equipped with spring accumulators

\(\left.$$
\begin{array}{|c|c|c|}\hline \text { Design } & \begin{array}{c}\text { Characteristics }\end{array} & \begin{array}{c}\text { ROSTA elements }\end{array} \\
\hline 1.1 \text { to } 2.2 \mathrm{~g} \text {-forces }\end{array}
$$ \quad \begin{array}{c}oscillating mountings:

AU, AS-P, AS-C, AR\end{array}\right]\)| drive heads: |
| :---: |
| conveying speed: |
| 6 to $22 \mathrm{~m} / \mathrm{min}$ |\quad| ST |
| :---: |

These "natural frequency" feeding system generally shows the same constructive design like the "brute-force" shaker, but is disposed with additional spring accumulator sets installed between trough structure and ground frame in order to reduce the hard hits by the change in direction of the crank shaft drive. Furthermore, due to the high dynamic stiffness of the spring accumulator sets, the course of motions of the trough becomes harmonic, energy-saving and gentle avoiding material stress and early fatigue cracks on the structure. This system runs very silent due to the permanent, bidirectional spring action support at the stroke ends. The max. acceleration of this one mass system should not exceed 2.2 g-forces. The quantity and size of the required spring accumulators depends on the trough weight and the relevant rpm's of the crank shaft drive.

Two mass shaker conveyor systems with direct reaction force-compensation

Design	Characteristics	ROSTA elements		
	acceleration: 1.5 to 5.0 g -forces	oscillating mountings: AD-P, AD-C, AR		
"fonveying speed:				
10 to $45 \mathrm{~m} / \mathrm{min}$			\quad	drive heads:
:---:				
ST				

This system is the "fast-runner" among the crank shaft driven shaker conveyors offering a very high material throughput. The lower counter-mass frame, directly connected with the feeding trough by means of ROSTA double rocker arms, fully compensates the resulting inertia forces of the mass 1 (trough) provided that its overall weight is identical with the trough weight. The upper shaker trough and also the counter-mass frame (or trough) offer a procedural field of applications. Both are feeding bulk material in the same direction; e.g. adding a sieve fraction in the upper trough bottom the small particles are sorted out and drop on the lower counter-mass or counter-trough being also shaken to the discharge-end of the machine.
For the most part, these two mass high-speed shaker conveyors are designed as smooth running "natural frequency" systems. Adding a quantitatively sufficient number of double rocker arms between trough, machine frame and counter-mass, the resulting
high dynamic stiffness of the elastic suspensions keeps the shaker machine running close to the natural frequency of the rocker arms. Otherwise, also by installing some additional DO-A spring accumulators between machine frame and trough or between machine frame and counter-mass a natural frequency acting of the system can be attained.

Technology

1. One mass systems without spring accumulators: Calculation

Subject			Symbol	Example	Unit
	Trough length		L	2.5	m
	Weight empty trough		mo	200	kg
	Weight of feeding material			50	kg
	Material coupling factor 50\%**		m_{m}	25	kg
	Weight of oscillating mass *		$m=m_{0}+m_{m}$	225	kg
	Eccentric radius		R	12	mm
	Stroke		$s w=2 \cdot R$	24	mm
	Rpm on trough		$\mathrm{n}_{\text {s }}$	340	min^{-1}
	Gravity acceleration		g	9.81	$\mathrm{m} / \mathrm{s}^{2}$
	Oscillating machine factor		K	1.6	
	Acceleration		$a=K \cdot g$	1.6	
	Total spring value of system		c_{\dagger}	285	N / mm
	Distance between rockers max.		$L_{\text {max }}$	1.5	m
	Quantity of rockers		z	6	
	Load per rocker		G	368	N
	Selection osc. elements (e. g.)			12x AU 27	
	Selection ROSTA-elements: AU, AR, AS-P, AS-C				
	Cent	ter distance of elements	A	200	mm
$\stackrel{\circ}{\Delta}$	Acceleration force Selection drive head		F	3423	N
				1× ST 45	
	Drive capacity approx.		P	1.0	kW
		Dynamic torque Dynamic spring value per rocker Dynamic spring value of all rockers Resonant ability factor	Mdd	2.6	Nm/ ${ }^{\circ}$
		C_{d}	7.4	N / mm	
		$z \cdot c_{d}$	44.7	N / mm	
		i	0.16		

* the following factors have to be considered by the definition of the material coupling:
- high coupling factor or sticking of wet and humid material
- possible stemming of the trough

Calculation formulas

Oscillating machine factor

$K=\frac{\left(\frac{2 \pi}{60} \cdot n_{s}\right)^{2} \cdot R}{g \cdot 1000}=\frac{n_{s}^{2} \cdot R}{894^{\prime} 500}[-]$
Total spring value of system
$c_{t}=m \cdot\left(\frac{2 \pi}{60} \cdot n_{s}\right)^{2} \cdot 0.001[\mathrm{~N} / \mathrm{mm}]$
Minimum quantity of rockers
$z=\left(\frac{L}{L \max }+1\right) \cdot 2[-]$
Load per rocker
$G=\frac{m \cdot g}{z}[N]$

Acceleration force (ST selection)

$F=m \cdot R \cdot\left(\frac{2 \pi}{60} \cdot n_{s}\right)^{2} \cdot 0.001=c_{t} \cdot R[N]$

Drive capacity approx.

$\mathrm{P}=\frac{\mathrm{F} \cdot \mathrm{R} \cdot \mathrm{n}_{\mathrm{s}}}{9550 \cdot 1000 \cdot \sqrt{2}}[\mathrm{~kW}]$

Dynamic spring value per rocker
$c_{d}=\frac{M d_{d} \cdot 360 \cdot 1000}{A^{2} \cdot \pi}[\mathrm{~N} / \mathrm{mm}]$

Resonant ability factor

$\mathrm{i}=\frac{\mathrm{z} \cdot \mathrm{c}_{\mathrm{d}}}{\mathrm{c}_{\mathrm{d}}}[-]$
By a resonant ability factor $\mathrm{i} \geq 0,8$ the system is usually titled "natural frequency shaker".

2. One mass system with spring accumulators: Calculation

Calculation analog chapter 1 with following additions:

Quantity
Dynamic spring value per item
Dynamic spring value of all items
Resonant ability factor
Selection of accumulators

	2	
z_{s}	100	$\mathrm{~N} / \mathrm{mm}$
c_{s}	200	$\mathrm{~N} / \mathrm{mm}$
$\mathrm{z}_{\mathrm{s}} \cdot \mathrm{c}_{\mathrm{s}}$	0.86	
i_{s}		

$2 x$ cons. of $2 x$ DO-A 45×80

Resonant ability factor with accumulators
$\mathrm{i}_{\mathrm{s}}=\frac{z \cdot \mathrm{c}_{\mathrm{d}}+\mathrm{z}_{\mathrm{s}} \cdot \mathrm{c}_{\mathrm{s}}}{\mathrm{c}_{\mathrm{t}}}[-]$
By a resonant ability factor $\mathrm{i}_{\mathrm{s}} \geq 0.8$ the system is usually titled "natural frequency shaker".

Technology

3. One mass shaker conveyor systems: Installation instructions

Distance between rockers $\mathbf{L}_{\text {max }}$:

- Usually, the distance between the rocker arms on the trough alongside is up to 1.5 meters, depending on the stiffness of the trough.
- By trough widths $>1.5 \mathrm{~m}$ we do recommend to provide the trough bottom side with a third, centrical row of rocker arms for stability reasons.

Mounting position drive head ST:

For one mass shaker systems it is recommendable to position the drive head slightly ahead of the center of gravity of the trough, towards the discharge end.

Rocker mounting angle $\boldsymbol{\beta}$:

According to the relevant processing function of the shaker conveyor, the rocker arms are positioned at mounting angles between 10° to 30° in relation to the perpendicular line. (The ideal combination of fast conveying speed with high material throw is given by a rocker inclination angle of 30°.) The power input position of the drive-rod from the eccentric drive should stay at right angles to the rocker arms, this orthogonal positioning offers a harmonic course of the drive system.

Angle of oscillation α :

The machine parameters, angle of oscillation and revolutions should be determined in the admissible area of operations (see chapter 5).

Screw quality:

The screw quality should be grade 8.8 secured by the required tightening moment.

Depth of thread engagement Z:

The depth of engagement should be at least 1.5 x the thread nominal width.

4. Average material speed on shakers \mathbf{v}_{m}

Main influence factors

- layer height of material
- property trough bottom (slipresistance)
- mounting angle β of the rockers
- feeding capability of the material depending on size, form and humidity of the grains, e.g. very dry and fine grained material is submitted to slippage factors up to 30%.

Example: One mass system with eccentric drive

Out of the intersection point
$\mathbf{R}=\mathbf{1 2} \mathbf{~ m m}$ and the revolutions
$\mathbf{n}_{\mathrm{s}}=\mathbf{3 4 0} \mathbf{~ m i n}^{-1}$ is resulting a theoretical material speed of $\mathbf{v}_{\mathrm{m}}=\mathbf{1 2 ~ \mathbf { m }} / \mathbf{m i n}$ or $\mathbf{2 0} \mathbf{~ c m} / \mathbf{s e c}$.

By acceleration factors $\mathbf{K} \boldsymbol{>} \mathbf{2}$ and rocker mounting angles of $\boldsymbol{\beta}=3 \mathbf{0}^{\circ}$ (to the perpendicular line) the vertical acceleration is getting bigger than 1 g , therefore the material starts lifting from the trough bottom = material throw.

Technology

5. Maximum rocker load G, revolutions n_{s} and angle of oscillation α

Size	$\operatorname{max.}$ load capacity per rocker [N]				max. revolutions $\mathrm{n}_{\mathrm{s}}\left[\mathrm{min}^{-1}\right]{ }^{*}$	
(e.g. AU 15)	$\mathrm{K}<2$	$\mathrm{~K}=2$	$\mathrm{~K}=3$	$\mathrm{~K}=4$	$\alpha \pm 5^{\circ}$	$\alpha \pm 6^{\circ}$
15	100	75	60	50	640	480
18	200	150	120	100	600	450
27	400	300	240	200	560	420
38	800	600	500	400	530	390
45	$1^{\prime} 600$	$1^{\prime} 200$	$1^{\prime} 000$	800	500	360
50	$2^{\prime} 500$	$1^{\prime} 800$	$1^{\prime} 500$	$1^{\prime} 200$	470	340
60	$5^{\prime} 000$	$3^{\prime} 600$	$3^{\prime} 000$	$2^{\prime} 400$	440	320

Please contact ROSTA for the permissible load indications by higher accelerations and for rocker elements offering higher load capacities. Usually are the revolutions n_{s} between 300 to $600 \mathrm{~min}^{-1}$ and the oscillation angles max. $\pm 6^{\circ}$.

* basics: "permissible frequencies" in the Technology part of the ROSTA catalogue.

The angle of oscillation α of each oscillating component (rockers accumulators and drive head) has to be settled within the permissible range (n_{s} and α).

Calculation oscillation angle for rockers

Eccentric radius R [mm] Center distance A [mm] Oscillation angle $\alpha \pm\left[{ }^{\circ}\right]$
$\alpha=\arctan \left(\frac{R}{A}\right)\left[{ }^{\circ}\right]$

6. Two mass shaker systems with direct reaction force-compensation

- Maximum acceleration forces of approx. 5 g , shaker lengths up to 25 meters
- Equipped with ROSTA double rockers AD-P, AD-C and/or made out of AR elements
- Ideal compensation when $m_{1}=m_{2}$
- Element selection analogue chapter 1, but with load of the two masses: Actuated mass (+ material coupling of feeding mass) $m_{1}[\mathrm{~kg}]$ Driven mass (+ material coupling of feeding mass) $m_{2}[\mathrm{~kg}]$ Total oscillating mass

$$
\mathrm{m}=\mathrm{m}_{1}+\mathrm{m}_{2} \quad[\mathrm{~kg}]
$$

Dynamic spring value c_{d} per double rocker

$$
c_{d}=\frac{3 \cdot M d_{d} \cdot 360 \cdot 1000}{2 \cdot A^{2} \cdot \pi}[\mathrm{~N} / \mathrm{mm}]
$$

- Calculation of c_{t} and F based on the total mass (m_{1} and m_{2})
- Power input from eccentric drive with ST arbitrary on m_{1} or m_{2} at any point alongside m_{1} or m_{2}
- On demand, special double rocker arms with varying center distances A are available as "customized rockers"

The 9 installation steps for a two mass system with double rocker arms:

1. All fixation holes for the rockers in trough, counter-mass and machine frame have to be drilled very accurately previous the final machine assembling.
2. Installation of the middle elements of the rocker arms on the central machine frame, all inclination angles duly adjusted (e.g. 30°), tightening of the screws with required fastening torque.
3. Lifting of the counter-mass with accurate horizontal alignment until the bores in the counter-mass frame stay congruent with the bore holes of the lower element. Jamming of the counter-mass with e.g. wooden chocks.
4. Tightening of the fixation screws on counter-mass with required fastening torque.
5. Inserting of the feeding trough into machine frame structure. Accurate horizontal alignment until the bores in the trough stay congruent with the bore holes of the upper element. Jamming of the trough with e.g. wooden chocks.
6. Tightening of the fixation screws on trough with required fastening torque.
7. Installation of the driving rod with drive head ST in "neutral" position i.e. eccentric drive should stay in between the two stroke ends. Length adjustment of the driving rod and tightening of the counternuts.
8. Removal of the jamming chocks under counter-mass and trough.
9. Test start of the shaker conveyor.

Oscillating Mountings

Type AU

Art. No.	Type	$\begin{gathered} \mathrm{G}[\mathrm{~N}] \\ \mathrm{K}<2 \end{gathered}$	Mdd [$\mathrm{Nm} /{ }^{\circ}$]	A	B	C	$\square \mathrm{D}$	E	F	H	J	K	L	M	$\varnothing \mathrm{N}$	O	Weight [kg]	Material structure	
07011001	AU 15	100	0.44	50	4	29	20	28	17	50	70	25	40	M10	7	33	0.2		
07021001	AU 15L													M10-LH					
07011002	AU 18													M12					
07021002	AU 18L													M12-LH			0.4		
07011003	AU 27			73	5				27					M16					
07021003	AU 27L	400	2.6											M16-LH					
07011004	AU 38													M20		74	1.6		
07021004	AU 38L	800	6.7	95	6	53	42	52	37	100	140	60	80	M20-LH	14	74	1.6		
07011005	AU 45	1'600	11.6	120	8	67	48	66	44	130	180	70	100	M24	18	89	2.6		
07021005	AU 45L	1	11.6	120	8	67	48	66	44	130	180		100	M24-LH	18	89	2.6		
07011006	AU 50	00	20.4	145	10	695	60	80	47	140	190	80	105	M36	18	93	6.7		
07021006	AU 50L					69.5								M36-LH				-	
07011007	AU 60	5'000	38.2	233	15	85	80	128	59	180	230	120	130	M42	18	116	15.7	$\frac{5}{0}$	
07021007	AU 60L													M42-LH				Z	

$G=$ max. load in N per element or rocker, by higher accelerations K, consult chapter 5 on page 2.24.
$M d d=$ dynamic element torque in $\mathrm{Nm} /{ }^{\circ}$ by oscillation angles $\alpha \pm 5^{\circ}$ in speed range of $\mathrm{n}_{s}=300-600 \mathrm{~min}^{-1}$.

Connection rod

All connection rods have to be provided by the customer. It is recommendable to use rods with right-hand and left-hand threaded fixation stubs and also ROSTA AU elements with right-hand and left-hand threads. In this combination the rocker length or center distance can be adjusted infinitely. In using only right-hand threaded rods, the final length adjustment of the rockers is less accurate - especially by the fine tuning of the shaker course it requires an exact length adjustment of all rocker arms to avoid lateral sliding of the trough.
The center distance A has to be identical by all attached rocker arms. The depth of thread engagement Z has to be at least

1.5x M.

Type AS-PV with inverted flange

Art. No.	Type	$\begin{gathered} \mathrm{G}[\mathrm{~N}] \\ \mathrm{K}<2 \end{gathered}$	Cd [N / mm]	A	B	B1	C	D	E	¢F	H	өK	Weight [kg]	Material structure
07081001	AS-P 15	100	5	100	50	-	4	50	70	7	25	18	0.5	Steel welded constructions, ROSTA blue painted
07091001	AS-PV 15													
07081002	AS-P 18	200	11		62	-	5	60	85	9.5	35	24	08	
07091002	AS-PV 18	200	1	120		68	5	60	85	9.5	35	24	0.8	
07081003	AS-P 27	400	12		73		5	80	110	11.5	45	34		
07091003	AS-PV 27	400				80	5	80	10	11.5	45	34	1.4	
07081004	AS-P 38	800	19	200	95		6	100	140	14	60	40	3.6	
07091004	AS-PV 38				-	104								
07081005	AS-P 45	1'600	33	200	120		8	130	180	18	70	45	5.5	
07091005	AS-PV 45					132								
07081006	AS-P 50	2'500	37	250	145		10	140	190	18	80	60	8.3	
07091006	AS-PV 50					160								

AS-C
for frictional center connection

	Type	$\begin{gathered} \mathrm{G}[\mathrm{~N}] \\ \mathrm{K}<2 \end{gathered}$	Cd [N / mm]							Weight [kg]	Material structure	
Art. No.				A	B	D-0.3	\varnothing E	өK	\square S		Inner square	Housing
07071001	AS-C 15	100	5	100	40	45	$10{ }_{+0.2}^{+0.4}$	18	15	0.4	Light metal profile	Steel welded construction, ROSTA blue painted
07071002	AS-C 18	200	11	120	50	55	$13{ }_{-0.2}^{0}$	24	18	0.6		
07071003	AS-C 27	400	12	160	60	65	$16_{+0.3}^{+0.5}$	34	27	1.3		
07071004	AS-C 38	800	19	200	80	90	$20{ }_{+0.2}^{+0.5}$	40	38	2.6		
07071005	AS-C 45	1'600	33	200	100	110	$24{ }_{+0.2}^{+0.5}$	45	45	3.9		
07071006	AS-C 50	2'500	37	250	120	130	$30{ }_{+0.2}^{+0.5}$	60	50	6.1		

$G=$ max. load in N per rocker, by higher K consult chapter 5 on page 2.24.
$\mathrm{Cd}_{\mathrm{d}}=$ dynamic spring value by oscillation angles $\alpha \pm 5^{\circ}$ in speed range of $\mathrm{ns}=300-600 \mathrm{~min}^{-1}$

Double Rockers

Type AD-PV with inverted flange

		$\mathrm{G}[\mathrm{N}]$		Cd [N / mm]	A	B	B1	C	D	E	$\propto \mathrm{F}$	H	K	Weight [kg]	Material structure
Art. No.	Type	$\mathrm{K}=2$	$\mathrm{K}=3$												
07111001	AD-P 18	150	120	23	100	62		5	60	85	9.5	35	40×20	1.2	Steel welded constructions, ROSTA blue painted
07121001	AD-PV 18					-	68								
07111002	AD-P 27	300	240	31	120	73			80	110	11.5	45	55×34	2.6	
07121002	AD-PV 27					-	80								
07111003	AD-P 38	600	500	45	160	95	-	6	100	140	14	60	70×50	5.0	
07121003	AD-PV 38					-	104								
07111004	AD-P 45	1'200	1'000	50	200	120		8	130	180	18	70	80×40	8.5	
07121004	AD-PV 45						132								
07111005	AD-P 50	1'800	1'500	56	250	145		10	140	190	18	80	90×50	12.9	
07121005	AD-PV 50						160								

AD-C
for frictional center connection

		$\mathrm{G}[\mathrm{N}]$		Cd [N / mm]	A	B	$\mathrm{D}_{-0.3}^{0}$	\varnothing E	K	$\square S$	Weight [kg]	Material structure	
Art. No.	Type	$\mathrm{K}=2$	K=3									Inner square	Housing
07101001	AD-C 18	150	120	23	100	50	55	$13{ }_{-0.2}^{0}$	40×20	18	0.8	Light metal profile	Steel welded construction, ROSTA blue painted
07101002	AD-C 27	300	240	31	120	60	65	$16_{+0.3}^{+0.5}$	55×34	27	1.8		
07101003	AD-C 38	600	500	45	160	80	90	$20 \begin{gathered}+0.5 \\ +0.5\end{gathered}$	70×50	38	4.1		
07101004	AD-C 45	1'200	1'000	50	200	100	110	$24{ }_{+0.2}^{+0.5}$	80×40	45	6.1		

$\mathrm{G}=$ max. load in N per rocker, by different K consult chapter 5 on page 2.24.
$\mathrm{cd}=$ dynamic spring value by oscillation angles $\alpha \pm 5^{\circ}$ in speed range of $\mathrm{ns}=300-600 \mathrm{~min}^{-1}$

Oscillating Mountings

Type AR

Art. No.	Type	$\begin{gathered} \mathrm{G}[\mathrm{~N}] \\ \mathrm{K}<2 \end{gathered}$	$\begin{gathered} \mathrm{Mdd} \\ {\left[\mathrm{Nm} /{ }^{\circ}\right]} \end{gathered}$	$\mathrm{A} \pm 0.2$	B	¢ C	H	L	L1 ${ }_{-0.3}^{0}$	ø M	N	0	$\square S$	Weight [kg]	Material structure
07291003	AR 27	400	2.6	39	21.5	$16_{+0.3}^{+0.5}$	48	60	65	30	35	M8	27	0.5	Light metal profile Light metal casting blue painted
07291004	AR 38	800	6.7	52	26.5	$20_{+0.2}^{+0.5}$	64	80	90	40	50	M8	38	1.0	
07291005	AR 45	1600	11.6	65	32.5	$24_{+0.2}^{+0.5}$	82	100	110	50	60	M10	45	2.0	

$\mathrm{G}=$ max. load in N per rocker, by higher K consult chapter 5 on page 2.24.
Mdd $=$ dynamic element torque in $\mathrm{Nm} /{ }^{\circ}$ by oscillating angles $\alpha \pm 5^{\circ}$ in speed range of $\mathrm{ns}=300-600 \mathrm{~min}^{-1}$

Single Rocker

The two AR mounts are inserted on the round connecting tube. The required center distance should be positioned on the straightening plate (parallelism), subsequently tightening of the two collars with the required fastening torque.

Two-Way Rocker

The three AR mounts are inserted on the round connecting tube, with the direction inverted center element. This so said "boomerang"-configuration is offering on the counter-mass trough a direction inverted flow of material, what could simplify selection and screening processing.

ROSTA

Double Rocker

The three AR mountings are inserted on the round connecting tube (please check required material thickness by the relevant center distance on below-mentioned table). The counter-mass can be used as second trough with identical feeding direction.

Dimensioning of the connecting tubes

The connecting tubes have to be provided by the customer. For Single Rockers with AR27 or AR38 the wall thickness of 3 mm up to center distance $\mathrm{A}=300 \mathrm{~mm}$ is fully sufficient. For Double Rockers see below-mentioned table.

Type	Tube-ø	min. thickness of tube	max. center distance A	min. mounting angle β [${ }^{\circ}$] with two-way rocker
AR 27	30	3	160	26.0
		4	220	19.5
		5	300	14.6
AR 45	5	4	200	27.5
		5	250	22.6

Further basic information and calculations on pages 2.22-2.24. By differing center distances A, please consult ROSTA.

Drive Heads Type ST

ST 18 －ST 50

ST 60－3 and ST 80

Art．No．	Type	F max． ［ N ］	$\mathrm{n}_{5}\left[\mathrm{~min}^{-1}\right]$ max． $\alpha_{\text {St }} \pm 5^{\circ}$	A	B	C	D	E	H	$\mathrm{J}^{+0.5}$	口K	L	M	$\square S$	Weight ［kg］		$\begin{aligned} & \text { lateric } \\ & \text { ructur } \end{aligned}$		Bolting on inner square
07031001	ST 18	400	600	50	55°	31.5	45	20	12 ± 0.3	6	22	39	M12	18	0.2				
07041001	ST 18L				$55_{-0.3}$								M12－LH						End－to－end
07031002	ST 27	1＇000	560	60	$65_{-0.3}^{0}$	40.5	60	27	20 ± 0.4	8	28	54	M16	27	0.4	言		－	screw or
07041002	ST 27L				65－0．3								M16－LH			$\frac{0}{\square}$		\％	threaded bar
07031003	ST 38	2＇000	530	80	90°	53	80	37	25 ± 0.4	10	42	74	M20	8	1.1	$\stackrel{\text { ® }}{ }$	을	$\stackrel{0}{0}$	quality 8.8
07041003	ST 38L	2000	530	80	90－0．3	53	80	37	25 ± 0.4			74	M20－LH	8	1.1	－	－	＜	
07031004	ST 45	3＇500	500	100	110°	67	100	44	$35+0.5$	12	48	89	M24	45	18	－	$\stackrel{\text { ® }}{\text { ¢ }}$	5	
07041004	ST 45L	3500						44					M24－LH	45			厤	$\stackrel{1}{2}$	
07031005	ST 50	6 6000	470	120	130°	69.5	105	47	40 ± 0.5	12×40	60	93	M36	50	5.5			－	screw quality
07041005	ST 50L												M36－LH					우	
07031015	ST 50－2	10＇000	470	200	210	69.5	105	47	40 ± 0.5	12×40	60	93	M36	50	6.9				
07041015	ST 50－2L	10000			210－0．3				40－	12×40			M36－LH			－			
07031026	ST 60	$13^{\prime} 000$	440	200	210 ± 0.2	85	130	59	45		80		M42			\％		\％	
07041026	ST 60L	13000	440	200	210 ± 0.2	85	130	59	45	M16	80	117	M42－LH	60	15.6	흑		－등	Shoulder studs
07031016	ST 60－3	20＇000	440	300	310 ± 0.2	85	130	59	45	M16	75	117	M42	60	20.2	$\frac{5}{0}$	$\bar{\otimes}$	$\stackrel{\circ}{0}$	uality 8.8 for
07041016	ST 60－3L	20000			310 ± 0.2								M42－LH			Z	ら	$\frac{0}{4}$	
07031027	ST 80		380	300	310 ± 0.2	100	160	77	60	M20	90	150	M52	80	36.7			岝	
07041027	ST 80L	27000	380	300	310 ± 0.2	100	160	77			90	150	M52－LH	80	36.7			O	connection

$\mathrm{n}_{\mathrm{s}}=$ max．revolutions by oscillation angle $\pm 5^{\circ}$ ；if osc．angle is below，higher rpm＇s are applicable，consult＂permissible fre－ quencies＂in the Technology part of the ROSTA general catalogue．
$\mathrm{F}_{\text {max }} \rightarrow$ Calculation of the acceleration force F on page 2．22．

Length of driving rod Ast and eccentric radius \mathbf{R}

To follow the guidelines of the permissible frequencies the angle of oscillation $\alpha_{S T}$ should not exceed $\pm 5.7^{\circ}$ ．This angle is corresponding to the ratio R ：$A_{\text {St }}$ of $1: 10$ ．

Calculation of the oscillation angle for ST

Eccentric radius
Center distance
Oscillation angle

R ［mm］

Installation guidelines
For the installation of the drive heads type ST under the trough－bottom it requires a stiff structure，ideally a heavy and rather long frame construction surrounding the power input from the eccentric drive．Too light and too short mounting structures for the drive heads could be submitted to early material fatigue and generate cracks on the feeding trough．The drive heads have to be installed fully free of play（frictional connection）．By multiple power transmission with several drive heads，all driving rods have to be adjusted on exactly the same length．The force transmission from the ec－ centric drive should stay right－angled to the guiding rocker arms．This supports a smooth course of the shaker．

Series connection of 4 pcs．ST 50

Spring Accumulators
 Type DO-A

Art. No.	Type	$\begin{gathered} \mathrm{C}_{\mathrm{s}} \\ {[\mathrm{~N} / \mathrm{mm}]} \end{gathered}$	A	$\mathrm{B} \pm 0.5$	D	E	F	$\varnothing 1$	$\square S$	G	H	L	L1-0.3	Weight [kg]	Material structure
01041013	DO-A 45×80	100	$12+0.5$	35	85	73	150	-	45		-	80	90	1.9	Light metal profile,
01041014	DO-A 45×100	125	120	35	85	7	150	-	45	-	-	100	110	2.3	ROSTA blue painted
01041016	DO-A 50×120	190								30	60	120	130	5.5	Light metal profile,
01041019	DO-A 50×160	255	M12	40	ca. 89	78	ca. 168	12.25	50	30	60	160	170	7.4	nodular cast iron,
01041017	DO-A 50×200	320								40	70	200	210	8.5	ROSTA blue painted

$c_{s}=$ dynamic spring value of the complete accumulator by oscillating angle of $\pm 5^{\circ}$ and revolutions n_{s} between $300-600 \mathrm{~min}^{-1}$
1 spring accumulator is always consisting of 2 pcs. DO-A elements!

Operating parameters

Angle of oscillation DO-A	Accumulator cons. of $2 \times$ DO-A 45				Accumulator cons. of $2 \times$ DO-A 50			
(series connection)	R	sw	max. ns	max. K	R	sw	max. ns	max. K
$\pm 6^{\circ}$	15.3	30.6	360	2.2	16.4	32.8	340	2.1
$\pm 5^{\circ}$	12.8	25.6	500	3.6	13.6	27.2	470	3.4
$\pm 4^{\circ}$	10.2	20.4	740	6.2	10.9	21.8	700	6.0

Installation guidelines

The connection structures (forks) between the ROSTA DO-A elements have to be provided by the customer. The two side plates have to stay right-angled $\left(90^{\circ}\right)$ in regard to the DO-A element axis. It is recommendable to weld a cross bracing (V) between the side plates.
The two DO-A elements of the accumulator have to stay parallel to each other and also parallel to the rocker arms of the trough. Their fixation on trough and base frame shall be made by means of a stiff fork structure. The fixation of the DO-A elements (on inner element section) shall be made with shoulder studs.

www.rosta.com

ROSTA Oscillating Mountings and Accessories for Customized Applications

Asymmetrical double rockers for high-speed shaker conveyors

To achieve highest material speed (up to $60 \mathrm{~m} / \mathrm{min}$) on shaker conveyors we recommend the installation of ROSTA double rocker arms with asymmetrical center distances between the elastic suspensions (ratio 2 : 1). Usually, the eccentric drive-input goes on the counter-mass frame which is connected to the shorter arm end and therefore weighs 200% of the upper feeding trough. The trough is connected to the longer arm end of the rocker. That is why it describes the double stroke in relation to the counter-mass. This gear ratio offers a long material throw on the trough by low reac-tion-force transmittance on the overall machine structure.
Please ask for our special application manual asymmetrical double rockers.

Oversized drive heads for heavy-duty crank shaft driven shaker conveyors

The biggest standardized ROSTA drive head type ST $\mathbf{8 0}$ is laid out to transmit acceleration forces up to $27^{\prime} 000 \mathrm{~N}$ on shaker troughs. For the actuation of e.g. heavy feeding hoppers or very long wood-waste shaker conveyors this capacity is not sufficient.
For the actuation of very large crank shaft driven shaker conveyors ROSTA also supplys the drive heads type ST 80-4 and ST 100-5 with acceleration force capacities F of $\mathbf{3 6} \mathbf{\prime}^{\prime} \mathbf{0 0 0} \mathrm{N}$ respectively $\mathbf{6 3} \mathbf{\prime}^{\prime} \mathbf{0 0 0} \mathrm{N}$ per head. These two heads are all made in steel welded construction and offer instead of the usually centrical tapped bore a box-shaped holding fixture for the drive rod (see drawing below). These two drive heads are not available from stock and will be manufactured only upon request (longer delivery time).

ROSTA Oscillating Mountings and Accessories for Customized Applications

ROSTA rocker arms AS-P and AD-P with shifted fixation flanges (30° position)

The fixation flanges of the standardized ROSTA single and double rocker arms type AS-P and AD-P are installed at right angle $\left(90^{\circ}\right)$ to the rocker arm axis. The practical experience showed that most of the shaker manufacturers install the rocker arms at inclination angle of 30° out of the vertical line to obtain an ideal combination of fast material feeding and high screening throw.
In case of very concise mounting conditions with low-pitched feeding troughs and slim machine frames and counter-masses the right-angled fixation flange sometimes protrudes the machine structure - and in extremely crowded constructions a bolted assembly through both flange bores is simply impractical. For such applications ROSTA offers as customized parts AS-P and AS-D rocker arms with fixation flanges staying 30° to the rocker arm axis allowing a very low mounting option of the rockers on trough and frame. Due to the rocker installation by pairs it is necessary to order right and left hand execution of the relevant rocker arms.

ROSTA guiding rods for "Flip-Flow" two mass shaker systems

Free oscillating screening systems with counter-mass frames and directly actuated flexible screen mats offer the great benefit of the mesh self-cleaning. Furthermore, the flexible mats generate a very high and wide material throw on the screen deck. In these systems the counter-mass m_{2} does usually overswing the screen-box mass m_{1} at the ratio of $2: 1$ generating the so-called "Trampoline-Effect" with wide throws and the self-cleaning of the screen meshes. For the elastic suspension and the linear guiding of the counter-mass frames in "Flip-Flow" systems ROSTA offers different guiding-rods and spring accumulators, which are supporting the phase-shifted acting of the two masses. (Please ask for our manual "Dual Amplifying Systems").

"natural frequench shaker conveyor equipped with dou-Two-mass "narms made out in light metal casting

Stainless steel rockervor foodstuff shaker conveyor

Two-directional ${ }^{\text {AR-"Boomerang" double rocker arms }}$
20-meter long two mass shaker conveyo
ped with double rocker arms AD-PV 45

ROSTA
www.rosta.com

Gyratory sifter machines (plan sifter) Technology

Introduction

Gyratory sifters stay mainly in use in the processing sectors of the flour and grain conditioning, in the pharmaceutical powder preparation and in the chipboard industry for the selection and cleaning of the different wood-chip sizes.

The circular screening motion is offering a fast and complete covering of the entire screen surface $=$ very high throughput.

Customized solutions

Gyratory screening machine installed on 8 pcs. AK-I 40 universal joints (joints made out of stainless steel)

Wood-chip sorting screen mounted on 8 pcs. AK 100-4 suspensions

ROSTA

Hanging gyratory sifters

Hanging gyratory sifters are almost exclusively used in the milling sector for the sorting of the different types of flour (white flour, dark flour, black flour). These screens, which are equipped with a central unbalanced shaft, normally hang from the building ceiling on rattan or round fibre-glass rods. Due to the relatively high weight of the screening machines, several rattan or fibre-glass rods are needed at each corner of the box to ensure the suspension. In cases of very high humidity in the buildings, both types of rods can slip out of the clamps. Furthermore, it is very difficult to set it up so that all the rods support approximately the same weight.

For these applications, ROSTA recommends the use of the AV mounts, which have a very high carrying capacity. Only one mounting set is thereby needed for each corner of the screening box. In addition, the AV mountings can be delivered with right-hand and left-hand threads, which facilitates the horizontal adjustment of the box. The AV mountings have a long service life, and do not have to be periodically replaced, as it is the case with the rattan rods.

Upright staying gyratory sifters with eccentric shaft drive

Upright staying gyratory sifter machines frequently have this classical type of crank drive. These screens are mainly used in the flour processing sector, as well as in chipboard manufacturing plants. An eccentric shaft driven by belts transfers the circular movement to the screen box. The screen box is supported by four legs, each consisting of two ROSTA universal joints. The weight of the box lies completely on the four supports, which accurately guide the box movement.

Upright staying gyratory sifters with unbalanced shaft drive

A very cost-efficient version of the upright staying gyratory sifter. Requires no complicated eccentric drive. The AK mountings or even the AV mountings must be overdimensioned, however, due to the lack of a precisely defined guidance.

Please contact ROSTA for projects using upright staying gyratory sifters with unbalanced shaft drive.

Oscillating Mountings for Gyratory Sifters

Type AK - Universal Joints

AK 100-5: Ø30 H7 x 30

Art. No.	Type	Max. load G [N] by system:			A	B	C	D	F	G	$\triangleright \mathrm{H}$	L	L1 ± 0.2	$\square \mathrm{S}$
		hanging	staying crank driven	$\begin{gathered} \text { staying } \\ \text { free oscillating } \end{gathered}$										
07061001	AK 15	160	128	80	$5{ }^{+0.5}$	$10^{ \pm 0.2}$	27	54	-	-	-	60	65	15
07061002	AK 18	300	240	150	$6+0.5$	12 ± 0.3	32	64	-	-	-	80	85	18
07061003	AK 27	800	640	400	$8+0.5$	20 ± 0.4	45	97	-	-	-	100	105	27
07061004	AK 38	1'600	1'280	800	$10^{+0.5}$	25 ± 0.4	60	130	-	-	-	120	130	38
07061005	AK 45	3'000	2'400	1'500	$12+0.5$	35 ± 0.5	72	156	-	-	-	150	160	45
07061011	AK 50	5'600	4'480	2'800	M12	40 ± 0.5	78	172	40	70	12.25	200	210	50
07061012	AK 60	$10^{\prime} 000$	8'000	$5{ }^{\prime} 000$	M16	45	100	218	50	80	16.5	300	310	60
07061013	AK 80	$20^{\prime} 000$	$16^{\prime} 000$	$10^{\prime} 000$	M20	60	136	283	50	90	20.5	400	410	80
07061009	AK 100-4	$30^{\prime} 000$	24’000	$15^{\prime} 000$	M24	75	170	354	50	100	25	400	410	100
07061010	AK 100-5	$40^{\prime} 000$	32'000	$20^{\prime} 000$	M24	75	170	340	50	100	25	500	510	100

$G=$ max. load in N per support column

		Weight		terial structure		
Art. No.	Type	[kg]	Inner square	Housing	Protection	Bolting on inner square
07061001	AK 15	0.4	Light metal profile	Steel welded construction	ROSTA blue painted	End-to-end screw or threaded bar quality 8.8
07061002	AK 18	0.6				
07061003	AK 27	1.9		Nodular cast iron		
07061004	AK 38	3.7				
07061005	AK 45	6.7				
07061011	AK 50	11.4				Shoulder studs quality 8.8 for optimizing frictional connection
07061012	AK 60	37.4	Steel			
07061013	AK 80	85.4				
07061009	AK 100-4	124				
07061010	AK 100-5	137		Steel welded construct.		

Usual drive parameters out of practice

- Driving speed n_{s}
up to approx. $380 \mathrm{~min}^{-1}$
- Oscillation angle α
up to approx. $\pm 3.5^{\circ}$

General advises

The operating parameters shall not exceed the guidelines of the "frequency spectrum" in the Technology part of the ROSTA general catalogue.

Calculation Example

Machine type: staying sifter with positive crank drive

Description	Symbol	Example	Unit	Calculation formula
Total oscillating mass (material included)	m	1600	kg	Angle of oscillation
Eccentric radius	R	25	mm	$\alpha=$ arctan $\left(\frac{R}{x}\right)\left[{ }^{\circ}\right]$
Length of support column	X	600	mm	
Angle of oscillation (out of R and X)	$\alpha \pm$	2.4	\circ	
Revolutions	n_{s}	230	$\mathrm{~min}^{-1}$	
Quantity of support columns	z	4	pcs.	Load per column
Load per column	G	3924	N	$\mathrm{G}=\frac{\mathrm{m} \cdot \mathrm{g}}{\mathrm{z}}[\mathrm{N}]$
Max. load capacity per column with AK 50 mounts	$\mathrm{G}_{\max }$	4480	N	

Element selection: 4 columns consisting of 2 pcs. AK $50 \rightarrow \mathbf{8}$ psc. AK 50

Installation guidelines for AK universal joints

(1) Install the two AK per column in the same line, in order that the distance X between the two inner squares of the 90° "distorted" element parts and the two inner squares of the "in-line" element parts is identical.
(2) Install the four identical connection columns (provided by the customer) between the two AK. Also by slightly inclined screen-boxes the distance or length X of the connection columns has to be identical - compensate the inclination with e.g. the higher positioning of the fixation brackets by the discharge-end of the screen-box.
(3) Up to the size AK 50 we do recommend to use our fixation brackets type WS for the AK mounting on machine frame and screen-box see ROSTA general catalogue "Rubber suspensions".

(4) To avoid unwanted tilting motions or screen-box distortions (by standstill) we do recommend the installation of the upper AK-brackets on the level of the center of gravity " S " of the screen-box.

Hanging and freely oscillating gyratory sifter

Staying gyratory sifter with positive crank shaft drive

Oscillating Mountings for hanging Gyratory Sifters

Type AV

Inner square AV 50 and AV 50 L

Art. No.	Type	$G[N]$ per suspension	A	$\mathrm{B} \pm 0.2$	C	$\square \mathrm{D}$	H	L	M	${ }^{\circ} \mathrm{N}$	0	$\square S$
07261001	AV 18	600-1'600	60	65	40.5	28	27	60	M16	$13{ }_{-0.2}^{0}$	54	18
07271001	AV 18L								M16-LH			
07261002	AV 27	1'300-3'000	80	90	53	42	37	80	M20	$16^{+0.5}$	74	27
07271002	AV 27L								M20-LH			
07261003	AV 38	$2^{\prime} 600-5^{\prime} 000$	100	110	67	48	44	100	M24	$20+0.5$	89	38
07271003	AV 38L								M24-LH			
07261014	AV 40	$4^{\prime} 500-7^{\prime} 500$	120	130	69.5	60	47	105	M36	$20+0.5$	93	40
07271014	AV 40L								M36-LH			
07261005	AV 50	$6^{\prime} 000-16^{\prime} 000$	200	210	85	80	59	130	M42	-	116	50
07271005	AV 50L								M42-LH			

$G=$ max. load in N per suspension
Elements for higher load on request

		Weight [kg]	Material structure			Bolting on inner square
Art. No.	Type		Inner square	Housing	Protection	
07261001	AV 18	0.4	Light metal profile	Light metal casting	ROSTA blue painted	End-to-end screw or threaded bar quality 8.8.
07271001	AV 18L					
07261002	AV 27					
07271002	AV 27L	1.0				
07261003	AV 38	17				
07271003	AV 38L	1.7				
07261014	AV 40	50				
07271014	AV 40L			r		
07261005	AV 50			Nodular cast iron		M12 shoulder studs
07271005	AV 50L	12.3				quality 8.8.

General advises

The operating parameters shall not exceed the guidelines of the "frequency spectrum", see Technology part in the ROSTA general catalogue.

The threaded connection rod has to be provided by the customer.

Calculation Example

Description	Symbol	Example Unit	Calculation formula
Total oscillating mass (material included)			
Eccentric radius (2)	m	800 kg	Angle of oscillation
Length of suspension rod	X	20 mm	$\beta=\arctan \left(\frac{R}{x}\right)\left[{ }^{\circ}\right]$
Angle of oscillation (out of R and X), shall not exceed $\pm 2^{\circ}(2)$	$\beta \pm$	600 mm	$1.9 \circ$
Revolutions	n_{s}	$230 \mathrm{~min}^{-1}$	
Quantity of suspension rods	z	4 pcs.	Load per suspension rod
Load per suspension rod	G	1962 N	$\mathrm{G}=\frac{\mathrm{m} \cdot \mathrm{g}}{\mathrm{z}}[\mathrm{N}]$
Max. load capacity per rod with AV 27 mountings	$\mathrm{G}_{\max }$	3000 N	

Element Selection:

4 pcs. AV 27 and 4 pcs. AV 27 L (left-hand threaded), the two $A V$ elements per suspension rod have to be installed crosswise (90° offset).

Installation guidelines for AV mountings

(1) With the right-hand and left-hand threaded connection in the AV housing the length X of the suspension rod can easily be adjusted, this length has to be identical for all four suspension rods. The indicated angular oscillating limitations have to be respected!
(2) Only the crosswise (90° offset) installation of the two AV elements per suspension rod is guaranteeing for a harmonic and circular motion of the screen-box.
(3) The crosswise installation of the AV elements has to be identical on all four suspension rods, e.g. all upper AV mounts shall stay 90° offset. (For the suspension or support of the discharge-ends of "ROTEX" sifter types the two elements per rod shall stay parallel to each other.)
(4) To avoid unwanted tilting motions or screen-box distortions (by standstill) we do recommend the installation of the lower AV -brackets on the level of the center of gravity "S" of the screen-box.
(5) Please consult ROSTA by the selection of AV elements for staying, free oscillating gyratory sifters.
(2) circular oscillation

ROSTA

Swinging Applications!

Examples:

Oscillating Mountings

ROSTA

ROSTA AG
CH-5502 Hunzenschwil Phone +41628890400 Fax +41628890409 E-Mail info@rostach

